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ABSTMCT 

. The shock curvature and flow variable gradients at the tip of a 

pointed body ca\lSed by nonequilibri\lffi effects are considered. 

Coordinates introduced by Chester are used since they offer a convenient 

way of treating the boundary conditions. The desired functions are 

obtained by solving numerically a system of linear ordinary differential 

eq_uations .. These. equations have a singularity; the nature of the singu

larity' is found analytically,' and its n\lffierical treatment is discussed. 

The specific nonequilibrium effect considered is vibrational relaxation 

in a pure diatomic gas. Representative results are given for flow of 

N2 over a cone for a comprehensive range of Mach number and cone angle. 

· There is a point analogous to the Crocco point. These results compare 

favorably with those obtained by South and NeWl!lan· using an approximate 

method. Another check is made by comparison with characteristic 

calculations extrapolated to the origin. 
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l. INTRODUCTION 

When nonequilibrium effects are considered in the fluid dynaniic 

equations, the classical similar' solutions describing supersonic flow 

over wed~es and cones no longer exist. To gain some insight into . 

nonequilibrium effects one can seek scilutioh_s valid in restricted regions 

of a flow, e.g., the vicinity of the tip of- a wedge or cone. The first 

approximation to the flow here is the frozen (similar) solution. The 

next approximation brings· into evidence the honequilibrium effects, such 

as the c'urvature of the shock 'wave.· The purpose· of 'this work is to find· 

this approximation for the case of 'flow oVer a cone and pointed ogives 

in general. 

The corresponding problem fo~ wedge flow (Se~!ey, 1961) is resolved 

by explicit solution of algebraic equations. For cone flow, differential 

equations with _two-po~_nt boundary conditions , (at sho~~ and podY surface") 

must be 1solved. The coefficients of these equations, which involve the 

frozen conical flow solution, give rise to a singular point, at least 

in all choices of coordinates investigatE7d· 

There is a close analogy between the problem of approximating the 

nonequilibrium flow in the neighborhood_of the tip_ of a wedge or cone 

and that of approximating the equilibrium or frozen flow near the tip 
' ' ' ' • I . 

of a pointed-ogive body. The latter problem was solved by Crocco (1937) 

for two dimensional flow and by Shen and Lin ( 1951) for axisymmetric 

flow. In order to treat the singul~rityfor the 'axisymmetric case, and 

especially its effects on higher aP,proxi;;,_ations,_ Kogan (1956) formulated 

the proplem in terms of Crocco's stream function. This refinement, 

however, is not included in the values of shock curvature hitherto 

published, Shen and Lin (1951), and Bianco et al, (1960). 

In_ the method of solution adopted here for determining shock 
• . - I' -

curvature and gradients .caused by nonequilibrium effects, these same 

quantities for frozen flow over ogival bodies are obtained as a 
• ~ • • r ' • 

by-product. The specific source of tbe nonequilibrium effects considered 
-. . . ' 

here is vibrational relaxation of a diatomic gas; however, the present 
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method can be employed for dissociation, ionization, etc. The model of 

a vibrationally excited gas serves as well as any other example to 

illustrate the techniq_ue and effects. 

A distinctive feature of this analysis is the choice of coordinates. 

Specifically the coordinates used are those introduced by Chester (1956) 

in his study of hypersonic flow over blunt bodies. The chief advantage 

of this choice is the ease of handling the boundary conditions on the 

shock; for here the unknown shock curve is mapped into one of the 

coordinate lines. Also the singular point at the tip is spread out into 
I 

a line interval along the second coordinate axis. The latter, but not 

the former, advantage is also gained with polar coordinates. The 

di~ferential equations now have an integrable, inverse one-half power-

type of singularity at the origin. This could be handled in the 

standard way -- using expansions to match the numerical solution; instead 

the entire problem is treated numerically, the authors believe this 

procedure to be more efficient. The singularity is treated by a "detailed 

approach to the body" which involves decreasing the step size in the 

Runge-Kutta numerical integration procedure. 

The motivation for this work arose in the computation of 

noneq_uilibrium flows over cones, Sedney and Gerber (1963), by the method 

of characteristics. One is forced to initiate that calculation by 

assu..ming a finite frozen flow region~ The effect of this error ca.l'l be 

relatively large and propagate two or three lengths of the original 

frozen region downstream even though the grid size is twenty to thirty 

times less than this length. The behavior near the tip can be studied 

by the laborious process of choosing successively smaller frozen flow 

regions~ 

The results of the present paper can be used as a check on those 

from the characteristic method. Alternatively, they can be used as 

input to start the characteristic calculation. With the improved 

approximation to the flow near the tip, a larger grid size is possible 

and a saving on computation time realized. 
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2. FLOW EQUATIONS 

The axisymmetric flows to be ·considered are steady, inviscid, and 
• 

isoenergetic. The equations for conservation of mass, momentum, and 

energy are, in non-dimensional form, 

a a 
ax (ypu) + ay (ypv) = 0 

M 2 
y "' [u~+ v~J= ax ay 

- l. 2.£. 
p ax 

1 2 2 2 Y; M~ (u + v ) + T + E = ht 

( 2 .1) 

(2.2) 

(2.3) 

(2.4) 

See Figure 1 for notation (where primes indicate dimensional quantities); 

p is density, p is pressure, Tis temperature, E is vibrational energy 

per unit mass, y is the ratio of frozen specific heats, and ht is the 

constant total enthalpy. Variables are made dimensionless as follows: 

lengths by Tb ~ where Tb is the relaxation time evaluated at the 

frozen corditions on the body tip and ~ is free stream velocity; 

velocities, pressure, density, and temperature by their free stream 
I 

values; vibrational energy by cpa T~ , the frozen enthalpy in the free 

stream. The model chosen for the diatomic gas with vibrational relaxation 

is discussed in Sedney (1961). The perfect gas law is assumed 

p = pT (2.5) 

snd the rate equation is 

u ~ + v ~ = [E* (T) - E]/t - ~ ax ay (2.6) 

13 



Figure l . 

SHOCK 

Cross-sectional view of flow field in the physical plane. 
{q' =flow speed; u', v' =velocity components in 
coordinate directions.) 1 

SHOCK 

TIP 

BODY 
0~------~~-----------+ 

Figure 2. Flow region in the ~. n plane. 
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.,;.; 

where T is the relaxation time referred to Tb
1 

, and E*(T) i's the local 

eQuilibrium value of E, given by 

E*(T) - (2Z/7)/(eZ/T .- l) 

with Z =(H) '/T 1 
iH'!. = characteristic vibrational tem·ne:r<:.t_-ture. The :voo'v .t" 

variation of T with T and p is approximated by 

and the subscript b refers to conditions on the body at ·the tip. The 
. . 

constan't c is evaluated for various~ temperature· ranges by fitting 

experimental data; e.g., those of' BlackmS:, (1956) or Millikan and White 

(1963). 

The independent variables x,y are transformed to ~. n by 

r; = 2l)!(x,y)//, n = Y . ( 2. 7) 

where 1)1 is the dimensionle-ss stream fimctl.on'· 

aljl/ax = - ypv, aljl/ay = ypu 

Thus L = - 2PV Land L = L + 2 (pu ~ L. and E(]_uaticins (2' l) 
ax n a~; ay an . n at;' · ' 

-' 
(2.2), (2.3), and (2.6) become, respectively, 

(2.8) 

., (_2 )~~ 
. . yM} . ar; - (2.9) 

~ . - .! . 
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- l (n ~- 21; ~) (2.10) 
P an a~; 

v (n <lE - 21; <lE) = !l [E*(T) - E] an a~;. T 
(2.11) 

Note that if vibrational energy in the free stream is negligible 

(E = 0) 
00 

This would be the case if' Too << 8v and equilibrium existed in the free 

stream. If the free stream is out of equilibrium E 
00 

\.fill, in general, 

not be negligible. This would occur if a cone were placed in the test 

section of a shock tunnel since the free stream is generally frozen in 

such a facility. In any case, behind the shock, E takes its free stream 

value. 

The variables 1; and 
I . 

n were employed by Chester in the study of 
I 

hy-personic ilow past blunt bodies. In the present problem the shock 

wave is attached at the pointed tip of the body, but the flow region is 

mapped into the same strip of the l;, n plane as for the case of a 

detached shock. This strip is shown in Figure 2 where it is seen that 

the tip transforms into the line segment n = 0, 0 ~ 1; < 1. This 

stretching is necessary to examine the singularity at the tip. It is 

also accomplished by using polar coordinates (when properly plotted on 

rectangular axes); however, the shock curve is unknown then. The same 

strip is obtained if a body-oriented coordinate system is used and the 

normal coordinate is normalized by the total distance between the body 

and shock, 

If the body is a cone and the flow is either frozen or in 

equilibrium so that the flow is conical, then the flow variables are 

constant along the lines i; = constant. This is shown using the fact 

16 
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that 1j! i~ homogeneous of degree two in the variables x and y, a result 

which follows ·from the definition of 1j! and the fact that pu and pv are 
' . . ' 

homogeneous of degree zero .. The streamlines are always_ the hyperbolae, 
2 sn ,; constant. 

On physical grounds .one would. expect that the flow at the tip, 

n- 0, should be frozen; this. is easily proved from Equations (2.8) 

(2.11). Setting n = 0, all terms containing a/an vanish, aE/a~; = 0, 

and the remaining equations give 

.92..: 
dl; 

.2£. = -
dl; 

D = p(pu -
vp3 

(2.12) 

\ 

2. . 
.l ( yMoo pVI;) . 
2 2 /D 

. p 

(2.13) 

Since ai/a~; = 0 along n = 0, E i? then constant-there; i.e., the flow 
• • r l 

is frozen at the tip. The constant will be the free stream value of E. 

The Equations (2.12) are those for conical frozen (Taylor-Maccoll) 

flow in the coordinates ~;, n; their numerical solution is a necessary 

step in the determination of the gradients since the frozen flow variables 

appear as coefficients in the gradient <>quations. This- so:j.tltion is 
.·· •. ~ ' .• ,1:_: .: 

. ·, 
17 



obtained by integrating from the shock, z; = l, to the body, s = 0, given 

M , y, and 8, where tan 8 is the shock wave slope. The initial condi-
oo 

tions at the shock are the standard frozen shock relations: 

2(M 2 sin
2 

8 - l) 
00 

u = l - -------:::---
w {y + llM} 

(2.14) 

and so forth. The half-angle of the body tip is determined from 

tan eb = ( v/u) r; = 0 
(2.15) 

One can integrate several cases and then interpolate to find a desired 

half-angle or set up an iteration procedure to yield this result. 

3. GRADIENT EQUATIONS 

The equations for the gra?ients of the flow variables are obtained 

by differentiating Equations (2.8) - (2.11) with respect to n, then 

setting n equal to zero. This requires the assumption* that 

a2 ;ar;an = a2 /anar;. 

• 

The following notation is introduced: 

u = {au/an) n = O' 
v = {av/an) n = o• n = (aE/on) n = o 

( 3 .1) 

R = ( ap/on) n = o• P = (ap/an) n = o 

The set of mathematicaL conditions insuring the interchangeabiLity of 
second derivatives is different from that insuring the validity of an 

expansion of the form f(n,r;Jb + (af!anJbn + O(n2J. Neither set can 
be verified a priori. 

18 



Hereafter, it is illlderstood that all quantities are evaluated 

at n = 0. The differential equations for the gradient furictions are 

(where · = d/dc) 

• n = (n - ~/v)/(2~) 

U = (1/D) [vG/p + b (C - £rl)/~J 

. 
V = (1/D) [-gG/p + f (C- £r2)/r;] 

' 

R =- [M 2 v~B + (g
2 + v

2 )(A- £F)/v + j(C- Erl)/~]/D 
00 

where the denominator D is the same as in Equation ( 2 .13). The 

coefficients g, b, f, and j are known filllctions of z;: 

g = u - ~/p 

2 2 
b = [pg/v- (y - 1) M

00 
vz;]/(2y M

00 
p) 

.j = p [(y- 1) i + g (y g- u) ]/(2y v), 

(3.2) 

( 3. 3a) 

(3.3b) 

(3.3c) 

(3.4) 

where u, v, p, and p have been obtained from the solution to Equations 

(2.12);. ~is given in Equation (2.6). The symbol E is equal to zero 

for frozen flow (no vibrational relaxation), and one for nonequilibrium 

flow. 

The c·aefficients .A, B, C, F, and G are linear filllctions of U, V, R, 

and n: 

A=- M 
2 

[y/2 + (y- l)(uP + p{c)] U- (y- l) M 
2 

(vp + p~) V 
00 00 

• 2 
+ (y- l)(pp/p )R ( 3. 5) 

19 



• • • 2 • 2 
B = (v/v) U + [u/v + (~p)/(p v) - 2vg/v ] V 

2 • • 
+ (~/p )(v/v + 2p/p)R 

2 • 
C = M~ (u- 2y~u- y~/p) U + M 

2 
(v- 2y~~) V 

~ 

2 • 
+ (1/p )(p + 2~ p)R 

( 3. 5) 

F = p n+ (l/~)(p/2)(Q- ~/v) 

G = pB + ~A/p- E [~pQ/p + (l/2)(Q- ~/v)] 

Equation (3.2) can be solved separately, using the initial condition, 
' ' fl( ~ = l) = 0 (since E does not change along ~ = 1} ; then fl can be treated 

as a known function of c in E~uations (3.3). Equations (3.3) are linear 

equations in U, V, and R, homogeneous when E = 0 and non-homogeneous when 
E = 1. 

The pressure gradient function Pb is obtained by differentiating 

Equations (2.10) with respect ton and taking n = ~ = 0: 

2 
Pb =- (yM~ ) pb (uU + vV)b (3.6) 

Initial conditions are apllied at the shock waye and ~ = 1; condi

tions there will be designate~ by the subscript w. For any function f 

of/on]~= 
1 

= (esc. 8) df/do = (esc 8)(df/d8) K w 

h k and K - d8/do is the where a is arc length along the s oc wave w = 

curvature of the shock. The initial conditions are 

U = (du/d8) K esc 8, w w 
V = (dv/d8) K esc 8 w w 

20 
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where du/d8, dv/dB, and dp/dB are obtained by differentiating the 

shock relations; e. g., Equation (2 .14). 

The solution to Equations ( 3. 3) can be w::-itten 

( 3. 8) . 

where Uh, Vh, and ~ are the solutions to the homogeneous equations, 

satisfying the initial conditions, 
' . 

and R are particular solutions to 
n .. 

ing the initial conditions (U ) = 
n.w . 

Equation (3.7), with K = l; U, V 
. . . .W n n '· 

the non-homogeneous equations satisfy-

(V ) = (R ) = 0. 
n V{ n w 

With the solutions Uh, U , .... R determined it remains to find K 
. - n n . w 

for the .complete solution, Equati.on ,( ~· 8). This is found by applying the 

terminal, condition, Equation (2.15) to the gradient functions. From 

Equation (2.l5) one obtains 

\ ~ tan eb + 
. 2 

(aeb/an)n ( 3. 9) = 
~ sec eb = 0 

also 

( 3. io) 

where 11, = deb/ds denotes the· curvature of the body at the·tip, and s' 

the arc length along the body. Combining Equations (3.8), (3.9) and 

(3.10) gives the shock curvature in terms of the body curvature 

tan 

tan 

Finally, the gradients on the body are given by · 

(dp/ds). = P. sin e., 
u u u 

21 
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(dT/ds)b 

( 3.12) 

where Pis given by Equation (3.6). 

Equation ( 3.11) shows that the shock wave curvature at the tip of 

a pointed body of revolution is the sum of two terms; i) the curvature 

for a curved body in frozen flow, and ii) the curvature for nonequilibrium 

flow over a cone. 

Previous calculations, SheJ and Lin ( 1951), and Bianco et al. ( 1960) , 

have been made of ~/K :for ideB.l gas flows ( E = 0 in Equations ( 3. 3)). 
- w I . 
These and calculations from the Jpresent work indicate that Kb/Kw becomes 

zero for every axisymmetric body at some M which produces a partially 
00 

subsonic, partially supersonic conical flow at the tip (n = 0). This 

implies that for each eb, there is an M
00 

for which, according to 

Equation (3.11), 

This is the "Crocco point" in axisymmetric flow (see Ferri (1954)). It 

is also seen from Equation ( 3.11), that for these same values of M and 
00 

eb the curvature of the shock wave in nonequilibrium flow becomes 

infinite at the tip of the cone (where 11, = 0). 

4. SOLUTION IN THE VICINITY OF THE SINGULAR POINT 

The equations for the gradient functions (3.2) and (3.3) have a 

regular singular point at c = 0. Following Ince (1926) the first step 

in examining the nature of the solutions in the neighborhood of the 

singular point is to set up the indicial equation and find its roots. 

When this is done for Equations (3.2) and (3.3) it is found that the 
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roots are: 0, 0, l/2, l/2. The presence· of the two· double roots indicate 

that logarithmic terms must be included, Thus, each variable has the 

form 

( 4 .1) 

where the P. denotes power series with unknown coefficients. Recurrence 
l 

relations obtained by substituting these forms into the differential 

equations determine the coefficients of the power series in terms of the 

arbitrary constants. 

Sirice a numerical solution to Equations (3.2) and (3.3) is obtained, 

a lengthy discussion of the singulari~y is not needed. Suffice it to 

say that' the constant terms in the series P2 and P4 are zero for each 

variable .. Thus, each gradient i'l.llfction has_ the fo;rm 

constant+ (c;112 ~ constant) . (4.2) 

in the neighborhood of <; = 0. 

5. NuMERICAL SOLUTION 

Equations (2.12) are first solved separately; then Equations (3.2) 

and ( 3. 3) are solved. Tbe Runge-Kutta-Gill method is used to. integrate 

the equations numerically.· 

With high speed computers it is possible to study the solution 

empirically by carrying out a "detailed approach" to the body; that is, 

to systematically decrease the interval size in the Runge-Kutta-Gill 
. -

procedure as 1; approaches zero, ending the calcu~ation at an extremely 

small but finite value of /;(o.l0-12 ). Tbis is the method used in the 
' . ,• ' 

present 'work. While admittedly not e~egant, this procedure does produce 
,;_· ... 

answers in reasonably short times, and a posteriori tests indicate that 

the values obtained are correct. Thus, unique limits for the gradient 

23 



functions are found as the integration interval and limiting I; approach 

zero; also, the calculated gradient functions exhibit the ~; 112 variation 

near zero, Eq_uation (4.2), which was demonstrated in Section 4. In 

addition, the calculated solution to Eq_uation ( 3.2) agrees with ·che 

known value (n = ~/v) obtained from Taylor-Maccoll flow. 

6. RESULTS 

In the case of cones (where ~ = 0) the shock curvature Kw reduces 

to the second term of the expression in Eq_uation ( 3.11). This quantity 

was calculated for a wide range lof Mach numbers and cone angles for 

nitrogen at 300°K. Results are ;shown in Figure 3 (solid curves). Each 

curve has a vertical asymptote occurring at a cone angle ror which the 

Taylor-Maccoll flow is supersonic at the shock wave, but subsonic at the 

body; K changes sign here and then decreases in absolute value with 
w 

increasing eb. The q_ualitative behavior of Kw is similar to that of 

shock curvature at a wedge tip, shown also in Figure 3. Figure 4 shows 

the variation of the pressure gradient at the tip of a cone; the 
I "Crocco point" asymptotes appear here also. 

From results of Millikan anld \fni te ( 1963) some representative 

of 'b 1 
'\, 

1
, the normalizing q_uan~ity .for distances, are: Tb qoo = 

6 4 
o1

4
o o . 

0.2 , and 0.03 em for eb = 30 ,' 0 , and 50 , respect1vely, at 

values 

5.2, 

M
00 

= 10, p
00 

1 = 1 atmosphere; for other p
00 

1
, the given 'b ~ is to be 

divided by the number of atmospheres. 

In Figure 5 the gradients of pressure, temperature, and density at 

the tip of a cone are given as functions of cone angle for Moo= 10, 

T 1 = 300°K in nitrogen. The density gradient is unusual in that it is 
00 

non-monotonic and changes sign; this change in sign takes place when 

the flow on the cone surface is subsonic. A similar type variation is 

found for density gradient at the tip of a wedge and is indicated in 

this figure; here the change in sign occurs for supersonic flow at the 
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wedge surface. Similar behavior for the density gradient in plane flow 

* was foW1d for the case of dissociating air, using the gas model and 

gradient formulae of Spurk, et al. ( 1966). 

As mentioned in Section 1, the present work has application in the 

calculation of axisymmetric nonequilibrium flows. In previous work, 

Sedney and Gerber (1963), an initial region of frozen flow was assumed 

in order to start a nonequilibrium flow computation by the method of 

characteristics. This lead to results illustrated in Figure 6 for 

pressure variation on the body in a typical case of flow over a cone. 
I 

The results are clearly in error near the tip; however, a curve drawn 

through the points further downstream can be faired back easily to the 

correct pressure at the tip~ as 'evidenced by the solid curve. This 

furnishes an indication that the results downstream are correct. The 

gradient calculations, indicated by the dashed lines, give further 

assurance of the validity of the characteristic computations downstream 

by demonstrating that the solid curves can be extended back to the tip 

pressure with the correct slope. Gradient values can also be useful in 

initiating nonequilibrium characteristic flow computations. 

I 

The present results can be compared with those obtained by an 

application of Dorodnitsyn's integral· method, South and Newman (1965). 

This latter procedure is an approximate method which yields algebraic 

equations for the curvature and gradients at the tip of a cone. Figure 

7 shows the comparison for two Mach numbers. The agreement, in general, 

is good; it is found to improve as the angle interval s - eb decreases. 

7. CONCL\iSION 

A method is given for determining the shock curvature and flow 

variable gradients at the tip of a pointed body of revolution. The use 

of variables introduced by Chester simplifies setting up the calculations 

* A charactePistic calculation of one example with an initially negative 
density gradient was performed. The gradient changed sign at a 
distance of Jx (initial frozen length) and thereafter was positive. 
All other flow vaPiables were monotonic. 
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as compared to use of polar coordinates. Although the specific source 

of departure from equilibrium considered here is vibrational excitation. 

the same technique can ·be applied to a dissociating gas, with the same 

qualitative results expected. 

It is shown that .the shock curvature at the tip of a point:'d body 

of revolution is the sum of two terms: i) the curvature for a curved 

body in frozen flow and ii) the curvature for nonequilibri um flow over 

a cone. Also, the Crocco point .for nonequilibrium flow occurs at the 

same Mach number .and cone angle combination as for fr~zen flow. 
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